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ABSTRACT 

1 
The premati  r e  longitudinal cracking of segmented columns has  

been identified a s  one of the most serious problems in the design of p r e -  

s t r e s s e d  segmented ceramic  members .  Circumstant ia l  evidence is p r e -  

sented to  support  the contention that large t r a n s v e r s e  tensi le  s t r e s s e s  

a r e  developed because of the non-flatness of segment interfaces .  

Two first o rde r  models a r e  developed for predicting the nonlinear 

response of p r e s t r e s s e d  segmented beams. 

is demonstrated experimentally and many of the cha rac t e r i s t i c s  of seg-  

mented beams a r e  explored. 

br i t t le  beams is formulated in t e r m s  of reliabil i ty and a specif ic  example 

is t rea ted  in  which the p r e s t r e s s  leads to a twenty-five fold inc rease  in  

s t rength when compared to a conventional beam of equal weight and 

reliabil i ty.  

The validity of the models 
I 

The strength of p r e s t r e s s e d  monolithic 

iii 



TABLEOFCONTENTS 

Section Page  
I INTRODUCTION AND PROGRAM SUMMARY. . . . . . . .  1 

A. O b j e c t i v e s . .  . . . . . . . . . . . . . . . . . . . . . . . . .  1 

B. Summary  of Cur ren t  P r o g r e s s  . . . . . . . . . . . . .  2 

1. T r a n s v e r s e  Cracking Phen.omenon. . . . . . . .  2 

P r e s t r e s s e d  Segmented Beams . . . . . . . . . .  2 

Bri t t le  Beams . . . . . . . . . . . . . . . . . . . . .  3 

2. Load-Deflection Charac te r i s t ics  of 

3 .  Strength of P r e s t r e s s e d  Monolithic 

I1 

I I11 

I IV 

STATE O F  THE PRESTRESSING ART . . . . . . . . . . .  4 

A. Pr e st r e s s ed Concrete  . . . . . . . . . . . . . . . . . . .  4 

B. P r e s t r e s s e d  and Segmented Concre t e .  . . . . . . . .  5 
C. P r e s t r e s s e d  Metallic Structures . . . . . . . . . . . .  6 
D. P r e s t r e s s e d  and Segmented Ceramics  . . . . . . . .  6 

TRANSVERSE CRACKING O F  SEGMENTED COLUMNS 13 
A, Interface Roughness Hypothesis - * . - 1 . . * . * 13 

B. Support of Hypothesis . - . . - . . * * . . + * * . 13 

1. La te ra l  Tensile S t resses .  . . . . . . . . . . . . . .  15 

2. F la l te r  Specimens and Smaller Specimens . . .  19 
3 .  Tri-Axial  Compress ion  Tes t s  . . . . . . . . . . .  22 

C. Design Implications of the Interface P r o b l e m .  * * 22 

LOAD -DEFLEC TION CHARACTERISTICS O F  
PRESTRESSED SEGMENTED BEAMS- . . . . . . . . . . .  
A. Mathematical  Models . . . . . . . . . . . . . . . . . . . .  

Models ( Z e r o  Stiffness Tendons). . . . . . . . . .  
Simply Supported Beams with Elas t ic  

27 

27 

1.  General  Formulat ion of the Bending 
29 

2. 
3 6 

‘3. Relationship Between Theory and Exper iments  60 

Tendons (Equi l ibr ium Method) . . . . . . . . . . .  

V 



Section 

V 

TABLE OF CONTENTS (Cont'd) 

PRESTRESSED MONOLITHIC BEAMS . . . . . . . . .  
A Conventional P r e s t r e s s e d  Design 
B . The Probabilist ic Nature of Structural  Design . . .  

D . The P res t r e s s ing  of Bri t t le  Mater ia ls  . . . . . . .  

. . . . . . . . . .  

. . . . . . . .  C The Distribution of F rac tu re  S t r e s ses  

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . .  

Page 

7 6  

7 6  

7 6  

77 

8 1  

87  

vi 



LIST O F  ILLUSTRATIONS 

Figure Page  

1 Tors iona l  P r e s t r e s s i n g  . . . . . . . . . .  m . . . .  5 

2 Typical P r e s t r e s s e d  Concfete Block Construction. . . . 5 

3 P r e s t r e s s e d  Segmented Ceramic  Wings . . . . . , . . . 
(After  F. R .  Shanley) 8 

4 Bending Tes t  of a Ti tan ium Carbide Beam. . . . . . . , 9 

5 Load-Deflection Curves of a Segmented Titanium 
Carbide Beam. . . . . . , . . e . . . . . . . . . . . . . 10 

6 S t r e s s -S t r a in  Diagram of a Titanium Carbide Column 12 

7 Compressometer  for 2” x 4” Segmented Glass  Column 14 

8 T r a n s v e r s e  Internal  Crack  Resulting f rom Di rec t  
C o m p r e s s i o n .  . . . . . . . . . . . . . . . . . . . . . . 16 

9 Indirect  Tension Tes t  After R. Berenbaum and 
I .  B r o d i e . .  . . . . . . . . . . . . . . . , . . . . . . . 17 

10 St r ip  Subjected to a Non-Uniform Axial Load . . . . . . 18 

11  

12  Tr i -Axia l  Compress ion  Tes t  Set-Up . . . . . . . . . . 23 

13 Typical Tri-Axial  Specimen . . . . . . . . . . , . . . . 24 

14 Effect of Size on the Compressive S t r e s s -S t r a in  
Diag ram of Segmented Glass  Columns . . . . . . . . . . 25 

15 Mathematical  Models for Bending Response . . . . . . . 28 

16 S t r e s s  Distribution in  Par t ia l ly  Separated Segments . . 30 

17 Load Deflection and Crack  Penetration Diag rams  
P r e s t r e s s i n g  Force :  160 kips . . . , . . . . . . . . . . 34 

Incrementa l  Formulat ion for a Rectangular 
can t i l eve r  Beam . . . . . . , . . . . . . . . . . . . . . 37 

19 Equi l ibr ium Formulat ion for a Rectangular 
Cant i lever  Beam . . . . . . . . . . . . . . . . . . . . . 38 

20 P r e s t r e s s e d  Segmented Simply Supported Beam - 
Z e r o  Stiffness Tendon . . . . . . . , . . . . . . . ’. . . 39 

21 Determinat ion of F vs. C for  F i g u r e  22 . . . . . . . . 47 

22 

23 Genera l  Load Deflection Diagram . . . . , . . . . . . 49 

24 Secant Method fo r  Determining the Tendon F o r c e .  . , . 49 

Ratio of T r a n s v e r s e  to Axial S t r e s ses  in  a Non- 
Uniformly Load Block . . , . , . . , . . . . . . . . . . 20 

I 

18 

Load-Deflection Diagram for a P r e s t r e s s e d  
S e g m e n t e d B e a m ,  , . . . . . . . . . . . . . . . . . . 48 

vii 



LIST O F  ILLUSTRATIONS (Cont 'd) 

Figure 

25 

26 

27 

28 

29 

3 0  

3 1  

32  

33 

34  

35 

36  

37 

38 

39 

40  

41 

4 2  
43 

General  Charac te r i s t ics  of the Tendon F o r c e  

Overall  Flow Diagram for  Computer P r o g r a m  

Deflection Curves for a Simply Supported Central ly  
Loaded P r e s t r e s s e d  Segmented Beam 

Effect of Tendon Eccentr ic i ty  on the Load-Deflection 
Curves for a Simply Supported Centrally Loaded 
P r e s t r e s s e d  Segmented Beam 

Effect of Tendon Stiffness on the Load Deflection Curves  
for a Simply Supported Central ly  Loaded P r e s t r e s s e d  
Segmented Beam 

Effect of Initial P r e s t r e s s  on the Load-Deflection 
Curves for a Simply Supported Centrally Loaded 
P r e s t r e s s e d  Segmented Beam 

Extreme Distributions of Contact Areas  i n  Segmented 
Beams 

Bending Fixture  for a Segmented Glass  Beam (Spkn: 
40"; Depth: 4"; Width: 2"; Segment Thickness:  lk") 

Bounded Experimental  Load-Deflection Curve for a 
Simply Supported Central ly  Loaded P r e s t r e s s e d  
Segmented Glass  Beam, Fo = 4,000 lbs  

Bounded Experimental  Load-Deflection Curve for a 
Simply Supported Central ly  Loaded P r e s t r e s s e d  
Segmented Glass  Beam, F = 6, 000 lbs  

Bounded Experimental  Load-Deflection Curve for a 
Simply Supported Central ly  Loaded P r e s t r e s s e d  
Segmented Glass  Beam, F = 8, 000 lbs  

Bounded Experimental  Load-Deflection Curve for a 
Simply Supported Central ly  Loaded Pyes t r e s sed  
Glass Beam, F = 12, 000 lbs  

Compressive Load Deflection Determination in Situ 

Compression Tes t  on Glass  Beam Gage Length = 
10";Avg. Area  = 7 . 3 2  iri2 

Fitted Experimental  Load-Deflection Curves  for a 
Simply Supported Central ly  Loaded P r e s t r e s s e d  
Segmented Glass  Beam 

Pres t r e s sed  Segmented Glass  Beam 

Calibration Check on the F o r c e  Washer 

W e i  bull Distribution 
Comparison of P r e s t r e s s e d  and Conventional Beams  
of Equal Reliability and Total Weight 

0 

0 

0 

v i i i  

Page  

5 2  

54 

56 

57 

58 

59 

62 

64 

65 

66 

67 

68 

69 

7 0  

7 1  

7 4  

7 5  

79 

8 4  



PRESTRESSED MONOLYTHIC AND SEGMENTED BRITTLE STRUCTURES 

I. INTRODUCTION AND PROGRAM SUMMARY 

A .  Objectives 

The  principal aim of the aerospace s t ruc tu ra l  designer is to  

To accomplish this provide s t ruc tu res  of minimum weight a n d  volume. 

objective in a n  environment of high temperature  and s e v e r e  oxidation, he 

is being forced m o r e  and m o r e  to consider the family of br i t t l e  ma te r i a l s  

composed of ce rme t s ,  ce ramics  and re f rac tory  meta ls .  In addition to 

the remarkable  high tempera ture  properties of such ma te r i a l s ,  one finds 

exceptional compress ive  s t rengths  and abrasion res i s tance .  

mos t  of the ma te r i a l s  occur abundantly i n  nature .  

a t t rac t ive  fea tures ,  many of these mater ia ls  a r e  produced only in small 

s i zes ,  the i r  cos ts  a r e  usually very  high, some a r e  toxic, often l a rge  

res idua l  s t r e s s e s  a r e  unavoidable, and al l  too frequently the mechanical 

proper t ies  exhibit enormous variabil i ty.  Saving the wors t  for  l a s t ,  their  

g rea t e s t  shortcoming f r o m  the s t ruc tura l  designers  point of view i s  b r i t t l e -  

nes s .  

F u r t h e r m o r e ,  

Notwithstanding these  

The  overa l l  objective of this program is to study the techniques 

of p re s t r e s s ing  and segmenting as one possible approach to the problems 

of br i t t l eness  and small section s i ze .  

p rog ram to develop a n  analytical  capability for predicting the behavior of 

p r e s t r e s s e d  monolithic and segmented brit t le s t ruc tu res .  

Specifically, i t  is the goal of this 

In  this  f i r s t  phase of the program, three  fundamental p roblems 

have been considered.  

t r a n s v e r s e  tensi le  s t r e s s  in a segmented column under ax ia l  compress ive  

loading. The  second, involves the prediction of the non-linear response  

of a p r e s t r e s s e d  segmented beam. 

benefits  which occur  f r o m  p res t r e s s ing  a monolithic br i t t l e  e lement .  

The f i r s t  of these deals  with the development of 

And the l a s t ,  concerns itself with the 

1 



B.  Summary of Curren t  P r o g r e s s  

1.  Transverse  Cracking Phenomenon 
~~~ ~ 

Cracking in a direction t r ansve r se  to a uniaxial compress ive  

load was f i r s t  recognized by F. R .  Shanley to be a ma jo r  de te r ren t  to  the 

application of p re s t r e s s ing  to segmented m e m b e r s .  In 1957, the au thors  

conducted a study of minimum weight deflection design for  p r e s t r e s s e d  

segmented beams i n  which the roughness of the segment  interfaces  played 

a predominant role .  

the interface roughness causes  t r a n s v e r s e  cracking. 

the following evidence was established. 

Based  on this background, i t  was hypothesized that 

To support  this view 

1. The  slope of the compress ive  s t r e s s - s t r a i n  d iagram of a 

segmented column inc reases  with increasing s t r e s s .  

fact  that the contact a r e a  inc reases  with axial  load and hence the st iffness 

correspondingly inc reases .  

This i s  caused by the 

2.  Column strength inc reases  with increasing f la tness .  

3 .  Specimens inc rease  in compressive s t rength with decreasing 

c r o s s  -sectional a r e a .  

4 .  Internal  t r a n s v e r s e  c r a c k  lenses  can  be observed in  g lass  

columns ( 2 i n  x 4 in x 1/2in) .  

5. Photoelastic and two-dimensional e las t ic i ty  r e su l t s  indicate 

that a n  uneven load distribution on a segment will cause  internal  tensi le  

s t r e s s e s  i n  directions para l le l  to the interfaces .  

6 .  Triax ia l  compress ive  t e s t s  indicate a v e r y  substantial  

i nc rease  i n  axial s t rength when a l a t e ra l  biaxial p r e s t r e s s  is imposed.  

2 .  Load - Deflection C ha ra c t e r i s tic s of P r e s t r  e s s e d Segment e d B e a m s  

Two quite different mathematical  models w e r e  developed to 

descr ibe  the nonlinear behavior of a p r e s t r e s s e d  segmented beam. 

closed form resu l t s  were  obtained for these models using rectangular  

beams  i n  which the tendon stiffness was neglected. 

tendon s t i f fness  gives r i s e  to a computer analysis  which can  be extended to  

beams of complicated c r o s s  -section. 

Identical  

The  complication of 

2 



The  load-deflection curve for a p re s t r e s sed  segmented beam 

has  a n  init ial  l inear  region followed by a non-linear region of continuously 

decreasing slope. 

possible to demonst ra te  excellent agreement between the bending theory 

and carefully per formed bending tests. 

With respec t  to the non-linear region, i t  has  been 

A specific example is t rea ted  in which the p r e s t r e s s  r e su l t s  in a twenty- 

five fold inc rease  in  capacity over  a conventional beam of equal weight 

and reliabil i ty.  

In the l inear  range, the prediction of the slope is equivalent 

to the problem of relating the effective a r e a  of a segmented column to the  

effective moment of iner t ia  of the corresponding beam. The  s ta t i s t ica l  , 
I nature  of this  problem was not recognized in sufficient t ime  to  properly 

deal  with it during the f i r s t  phase of this program. 

3 



11. STATE O F  THE PRESTRESSING ART 
~~ 

P r e s t r e s s i n g  is a technique whereby permanent  s t r e s s e s  a r e  

introduced into a s t ruc tu re  p r io r  to the application of i ts  s e r v i c e  loads.  

The resulting initial s ta te  of s t r e s s  can be made to have a profound 

influence upon the s t rength and s t i f fness  of the s t ruc tu re .  

a t i c  t reatment  of the general  cha rac t e r i s t i c s  of p r e s t r e s s i n g  may be  found 

in Roark- 

A brief  s y s t e m -  

11 

A. P r e s t r e s s e d  Concrete  

Thc application of p re s t r e s s ing  principles to concre te  - that  i s ,  

of applying ar t i f ic ia l  compress ion  to negate any tensi le  s t r e s s e s  developed 

in  the  loaded s t ruc ture-  was conceived many y e a r s  ago  and a t tempts  w e r e  

made  to apply them as ear ly  as  the 1880 's .  

f rus t ra ted  by the p re sence  of c r e e p  in the concre te  and in  the mi ld  s t e e l  

tendons used by the ea r ly  invest igators .  

eventually developed tension c r a c k s  even though they behaved accord ing  

to theory when the p r e s t r e s s  was f i r s t  applied. 

These  f i r s t  a t tempts  w e r e  

Thei r  p r e s t r e s s e d  m e m b e r s  

Eugene F reyss ine t  was apparently the f i r s t  man to  suggest  a 

remedy to this problem and in 1928 he took out a F r e n c h  patent fo r  con- 

c r e t e  p re s t r e s sed  with high s t rength  w i r e .  

w i r e  is sufficiently high that c r e e p  lo s ses  which occur  subsequent to the 

p re s t r e s s ing  r ep resen t  only a small p e r  cent of the or iginal  p r e s t r e s s  

level .  Consequently, a f te r  long per iods of t ime  the tension under load 

can  s t i l l  be eliminated o r  reduced to a specified small value.  

portant  to point out that all of the modern  design methods deal  explicitly 

with the  c r e e p  problem. 

The ult imate s t rength of this  

It is i m -  

Over the l a s t  35 y e a r s ,  the  development -of p r e s t r e s s e d  conc re t e  

has  rapidly gained ground. Applications to  beams ,  t r u s s e s ,  plates ,and 

she l l s  a r e  a lmos t  commonplace. Indicative of the high leve l  of develop- 

ment  enjoyed by p r e s t r e s s e d  concre te  is the design, using this  ma te r i a l ,  

of the wings of a spec ia l  guided m i s s i l e  o r d e r e d  in 1947 by the F r e n c h  A i r  
2 1  Ministry.-  It was ver i f ied that the s t i f fness  of the resu l t ing  wing s t r u c t u r e  

was about 50 p e r  cent higher than ones built of s t ee l  o r  light alloy. The 

4 



weight turned out to  be 1 2  pcr  cent of thc total weight of the c raf t  (which 

was considered quite reasonable)  and the ultimate s t rength was even 

higher than they forecastcd.  

s t r e s s ing  was used in the Philips Pavilion at Brussels.?’Hcre, a tors ional  

p r e s t r e s s  was introduced into th(1 main ribs of thc pavilion by the technique 

i l lustrated in  F ig .  1. A similar application was proposed by Shanley4--/in 

connection with high per formance  ce ramic  shell s t r i ic turcs .  

A more  recent unusi ia l  application of p r e -  

Fig.  1 TORSIONAL PRESTRESSING 

B. P r e s t r e s s e d  and Segmentcd Concrete 

P r e s t r e s s e d  and segmented concrete s t ruc tu res  appear  frequently 

in  pract ice;  for example, the Gladesville Bridge in  Sydney, Austral ia  

furnishes  a dramat ic  example of 1000-ft arch span assembled  with p recas t  

segments .  

c r e t e  br idges a r e  discussed in a recent  paper by Gerwick.2’ In this 

country, use  of concrete  blocks in beams and panels has  been extensively 

exploited by the firms of Bryan and Dozier of Nashville, Tennessee,  and 

the Nashville Breeko Block Company. 

is i l lustrated in  Fig. 2. 

This  bridge and a number of other long-span segmented con- 

The basic idea of this  construction 

7 M o r t o r  Joints Between All Blocks 
7 Strand 

Socket1 1 End Runner Depressor Runner Depressor 
Block Bearing 

PI a te Block Block Block Block 

Fig.  2 TYPICAL PRESTRESSED CONCRETE BLOCK CONSTRUCTION 

5 



C. P r e s t r e s s e d  Metallic S t ruc tures  - 
P r e s t r e s s i n g  of me ta l  s t ruc tu res  was proposed in  1947 by the late 

Gustave Magnel. 

in the lower  chord of a t r u s s  without the accompanying l a rge  deformations.-  

In 1949, Dr. Ing. F. Dischinger,  P r o f e s s o r  at the Technical  University of 

Berlin,  proposed a method of p re s t r e s s ing  s t ee l  g i r d e r s  with concre te  

s labs  solidly attached to  the i r  top flanges. 

s t ee l  bridge t r u s s e s  have been reinforced by p res t r e s s ing  the i r  lower chords .  

To achieve g r e a t e r  lateral st iffness in  a Canadian skysc rape r ,  p r e s t r e s s e d  

X-bracing was used in var ious bays. 

posed for  effecting substant ia l  weight savings in rol led sect ions by using a 

p res t r e s sed  Queen P o s t  arrangement .L/  In 1960, the Iowa State Highway 

Commission began the development of a method of p re s t r e s s ing  s t e e l  beams 

which-involves loading o r  deflecting a mild steel beam and welding on a 

high strength s t ee l  cover  plate while the beam is deformed.  The load is 

then removed leaving a beam with a n  a t t rac t ive  s t rength  t o  weight ra t io .  

He presented a method of utilizing high-strength steel 
6 /  

In England, a number of old 

Recently, a p rac t i ca l  method was  p ro -  

D. P r e s t r e s s e d  and Segmented Ceramics  

Applications of p re s t r e s s ing  and segmenting methods to  c e r a m i c  

mater ia l s  appear  infrequently. 

techniques a r e  used for  nonstructural  purposes ;  the Kennametal Company 

shr ink  fits s t ee l  jackets  over  carbide tools, and the Norton Company t h r e a d s  

sho r t  boron carb ide  cyl inders  over  a cen t r a l  s t e e l  rod for use  a s  r e a c t o r  

control  e lements .  

ma te r i a l s  i n  high per formance  s t ruc tu res  was  motivated in  pa r t  by a r e p o r t  

p repared  by the Ohio State University R e s e a r c h  Foundation8--/ which indi-  

cated that g r e a t  possibi l i t ies  could be der ived f rom a n  a l l - c e r a m i c  wing 

des ign  i f  means could be found to  c i rcumvent  the poor tensi le  propei-t ies of 

ce ramics .  

pose was investigated by Shanley in  a r e p o r t  p repa red  for  the Rand Corpora-  

tion?' i n  1951. 

Scat tered examples  can be found where  the 

The idea of using p r e s t r e s s e d  segmented c e r a m i c  

The possibil i ty of using p res t r e s s ing  techniques f o r  th i s  pu r -  

A number of investigations of p r e s t r e s s e d  c e r a m i c s  have been con-  

ducted by the staff of  the University of Cal i fornia  under the  d i rec t ion  of 

6 



Shanle y . 4s10/ Several  types of civil engineering s t ruc tu res  were  studied 

including a 4-ft canti lever beam made f rom four ce ramic  building blocks 

and a number of wall  panels and s labs  a lso constructed f r o m  ce ramic  

blocks, 

and the r e su l t s  were  pr imar i ly  of a feasibility nature.  

In 911 of these investigations, very low s t r e s s  levels were  achieved 

F o r  a i r c ra f t  application, the four high-alumina porcelain wing 

s t ruc tu res  shown in F ig .  3 were fabricated and tes ted.  In the first three  

of these wings, failure occurred while the pres t ress ing  loads were  being 

applied. 

formed para l le l  to the wing axis, suggesting the presence  of c i rcumferent ia l  

tension. Nadai, i n  discussing compression members  of porcelain, mentions 

that fa i lure  often occurs  in  the form of longitudinal cleavage c racks .  

This phenomenon is attr ibuted by him to a wedging action of the column 

caused by frictional r e s t r a in t  of the compression plates against  radial  expan- 

s ion of the column. 

by fi l ler  mater ia l ,  most  noticeably lead, penetrating the c rev ices  of the 

ma te r i a l  and thus initiating such cracks.  

a n  average p r e s t r e s s  of 2000 p s i  was applied. 

uniformly loaded to failure,  which occurred at a maximum bending s t r e s s  

of 1590 psi .  

strength of 12,  000 psi, and tests of smaller samples  developed compression 

s t rengths  averaging 40, 000 psi .  

s t rengths  of 

The fai lures  were  quite interesting in  that the init ial  c r acks  were  

’i/ 

Fur the r  explanation is s een  in wedging action produced 

In the t e s t  of ce ramic  wing No. IV, 

The s t ruc ture  was then 

Tes t s  of the individual wing sections showed a compress ion  

It should be noted that compressive 

400, 000 p s i  a r e  not uncommon in c e r a m i c s .  

A s e r i e s  of exploratory experiments on p r e s t r e s s e d  segmented 

t i tanium carbide elements  were  conducted by Barnettlz’as pa r t  of a 

minimum weight investigation of rocket launcher s t ruc tu res .  

bending members  studied in this  program is shown in  F ig .  4. 

sustained bending s t r e s s e s  of 8000 ps i  and p res t r e s s ing  levels as high as 

120, 000 p s i  without s igns of d i s t r e s s .  No at tempt  was made to a t ta in  the 

ult imate bending s t rength since stiffness and not s t rength was the main 

concern of this  study, 

One of the 

The member  

Resul t s  of the bending tes t s  are shown in Fig.  5 where we observe 

that the ini t ia l  s t i f fness  increases  with increasing p r e s t r e s s .  Titanium 

carbide has  a straight-l ine compressive s t r e s s - s t r a i n  curve up t o  about 

7 
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500, 000 ps i ;  consequently, the segmenting has the effect of lowering the 

s t i f fness .  

beam segments .  

Fig.  6 .  
interfaces  a r e  not f lat ,  and consequently, the contact a r e a ,  and hence 

s t i f fness ,  i nc reases  monotonically with increasing axial  load. To check 

this p r e m i s e  and to determine means for dealing with i t ,  a n  investigation 

was conducted which involved lapping the interfaces ,  using sh ims  of 

var ious ma te r i a l s  between the segments ,  and buttering the interfaces  with 

hydrocal.  

ment - - the  sh ims  w e r e  not effective. 

repor ted  considerable  difficulty with the gasket ma te r i a l s  he used between 

the segments  of the f i r s t  t h ree  wings. 

This  effect a l so  appeared in the d i rec t  compress ion  t e s t  of the 

A typical compressive s t r e s s - s t r a i n  d iagram is shown in 

The  observed curvil inearity is caused by the fact that the segment 

The lapping and the hydrocal gave r i s e  to  considerable  improve-  

I t  is of s o m e  in t e re s t  that  Shanley 

A remarkably complete account of the cha rac t e r i s t i c s  of p r e -  
, 

s t r e s s e d  segmented br i t t l e  mater ia l s  can be found in a brief a r t i c l e  by 

A .  J .  H a r r i s .  - 1 3  I 
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111. TRANSVERSE CRACKING O F  SEGMENTED COLUMNS 

In summar iz ing  his work on ceramic wings, Shanley identifies 

the p rema tu re  cracking of the ce ramic  elements in  the spanwise direct ion 

as the most  s e r ious  problem in  the design of p r e s t r e s s e d  c e r a m i c s .  

F o r  this reason,  a portion of this  program h a s  been d i rec ted  toward 

this  problem. 

A. Interface Rouehness HvDothesis 

Because the roughness of segment in te r faces  played such a 

significant ro le  in  the st iffness experiments with t i tanium carbide,  i t  

seemed reasonable to adopt this p remise  as a first hypothesis for explain- 
ing the t r a n s v e r s e  cracking of segmented elements under axial com-  

p res s ive  loads.  

support  this  position. 

Indeed, the studies described in  this  chapter  appear  to 

B. Support of Hypothesis 

For r easons  of cost ,  availability, t ransparency ,  and ex t r eme  

br i t t leness ,  plate g l a s s  was chosen as the model ma te r i a l  f o r  the exper i -  

menta l  phases  of this p rogram.  

blocks with nominal dimensions of 2 x 4 x 1/2 inches where the eight 

square  inch sur faces  were  5 to  7 lightbands out of flat. 

The glass  was received in  the form of 

The f i r s t  test per formed was a simple determinat ion of the 

compress ive  s t r e s s - s t r a i n  d i a g r a m  of the 2 x 4 x 1/2 inch g l a s s  blocks 

shown in  Fig.  7 .  

spalling was observed on the per iphery  of the glass  segments .  

of the g l a s s  segments  subsequent t o  the test  revealed that  all of the blocks 

contained lens- l ike c r a c k s .  

cu la r  to the axis of loading and their  centers  were  loca ted 'near  the 

cen t r a l  plane of the segments .  

The t e s t  was terminated at about 10, 000 p s i  when 

Examination 

The normals  to  these lenses  w e r e  perpendi-  

The c racks  did not penetrate  to  the su r faces .  



Fig.7 COMPRESSOMETER FOR 2"x 4" SEGMENTED GLASS 
COLUMN 
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Figure  8 is a n  artists rendering of a typical c r ack  lens .  

obtain photographs which gave a sat isfactory prospect ive.  

We could not 

1. La te ra l  Tensi le  S t r e s ses  

In a segmented column, the roughness of the segments  gives 

r i s e  to  a nonuniform distribution of axial  s t r e s s e s  acr0s .s  t he i r  in te r -  

faces .  

t r a n s v e r s e  d i rec t ion  to the loading. 

ind i rec t  method of obtaining the tensile strength of br i t t le  ma te r i a l s .  

The method has  been descr ibed by Berenbaum and Brodie 

ducted a two-dimensional photoelastic analysis of the nonuniformly 

loaded block shown in  Fig.  9a. The resul ts  shown in  F i g .  9b indicate 

that the t r a n s v e r s e  s t r e s s  under the load assumes  a maximum tensile 

value at the center  of the block and becomes compress ive  at  the top 

and bottom su r faces .  

the in te rna l  c r a c k  lenses  which did not penetrate t o  the s u r f a c e s .  

This  i n  t u r n  causes  tensi le  s t r e s s e s  t o  be developed in  the 

This principle has  been used as a 

'4/ who con- 

This  cor responds  to  our  observations concerning 

Additional insight into the nature of the t r a n s v e r s e  tensile stresses 

can be gained by studying the s t r e s s  distribution in  the s t r i p  shown in  

F i g .  10. 

bottom su r faces  is A (  1 t s i n  ) where the in te rger  m rep resen t s  

the number of waves and L is the s t r i p  length, Refer r ing  t o  Timoshenko 

and Goodier, L5/ the  s t r e s s  dis t r ibut ion becomes 

The intensity of the ver t ica l  forces acting on the iop and 
mmx 

(a cosh a - sinh a) cosh cry - a y  sinh cry sinh a 
sinh 2a + 2a s in  MC (1)  cr = 2A 

X 

(2) (a cosh a t sinh a) cosh cuy - cuy sinh cuy sinh a 
Q3r - A u = -2A Y sinh 2a + 2 a  



Fig.8 TRANSVERSE INTERNAL CRACK RESULTING FROM 
DIRECT COMPRESSION 
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( 3 )  
a cosh a sinh ty y - Cry cosh Qy sinh a = - 2A cos  (Yx 

XY s i n h 2 a  t Za 7 

mm and c is half the s t r i p  depth. mTlC 
L where a = - and (Y = 

Specializing these  formulas  to  give the maximum s t r e s s e s  in the middle 

plane (y  = 0, s i n & x  = 11, the rat io  of t ransverse  to axial  stress becomes 

U 
x -  

Y 

a cosh a - sinh a - - -  
U ( 1  .+ cosh a )  (a t sinh a) (4 )  

This  re la t ionship has  been plotted in  F i g .  11 where we observe  that  

somewhere between v e r y  few waves and very many waves the re  ex is t s  
I 

a "worst" condition. W e  observe fur ther  that tensi le  fa i lures  can occur 

i f  the tensi le  s t rength of the s t r i p  mater ia l  is less than 15. 3 p e r  cent 

of its compress ive  s t rength.  

s t rength is l e s s  than 10 pe r  cent of the i r  compressive s t rength.  

F o r  most  ceramic m a t e r i a l s  the tensi le  

, 
I There  a r e  two important s imilar i t ies  between the photoelastic and 

the elast ic i ty  solutions considered. Both show the existence of t r ansve r se  

tensi le  s t r e s s e s  of the same  o r d e r  of magnitude as the ax ia l  s t r e s s e s ,  and 

both show the t r a n s v e r s e  s t r e s s e s  to  be maximum in  the middle plane and 
I 

l compress ive  nea r  the top and bottom surfaces .  

is negative at y = t c .  

Equation 1 shows that cx 

- 

2 .  Fla t t e r  Specimens and Smal le r  Specimens 

Examination of the interfaces  of the 2 x 4 x 1/2 inch g l a s s  blocks 

with optical  flats seemed to  indicate that the su r faces  contained a relat ively 

small number of waves.  

by lapping which, according to  our  roughness hypothesis, should inc rease  

the ul t imate  compress ive  s t rength of a segmented column. Fur the r ,  if 

the l a r g e r  amplitude waves a r e  the more influential i n  controlling sur face  

The amplitudes of these waves can be reduced 
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contact, i t  follows that sma l l e r  specimens should be s t ronger  than l a r g e r  

ones ,  

ex t r eme  value s ta t i s t ics  that the maximum amplitudes a r e  sma l l e r  i n  

small specimens.  

This  observat ion is based on the obvious and s imple resu l t  f rom 

Nominal Size 

2 x 4 x 1/2 in .  

The ul t imate  compressive strengths of segmented columns were  

determined for two glass s i zes  and two levels of interface roughness for 

each s i ze .  

lightbands) w e r e  lapped to a f la tness  of 2 - 3  lightbands. 

segments  f r o m  each  of the result ing groups were  then cut to produce 

lx2x1/2 inch segments .  

segments  were  slowly loaded in  compression until catastrophic  fa i lure  

occur red  and the maximum nominal s t r e s s  was recorded .  These  ult imate 

compress ive  s t rengths  a r e  given in  Table 1. Each  value l i s ted  r ep resen t s  

the ave rage  s t rength of th ree  five-segment columns. 

the s t rength  i n c r e a s e s  a s  the segments  become f la t ter  and a s  they become 

s m a l l e r .  

Some of the 2x4x1/2 inch "as  receivedl 'g lass  blocks ( 5 - 7  

A portion of the 

The columns corresponding to  the four types of 

It can  be s e e n  that 

Ultimate Compress ive  S t r e s s  

"As Received" 5-7 Lightbands "Lapped" 2-  3 Lightbands 

52, 450 psi 53,445 ps i  

Although the t e s t s  appear  to  support the  roughness hypothesis, it 

should be pointed out that  there  are  other  possible explanations for the 

observed behavior.  

a valid s ta t i s t ica l  inference concerning the ave rage  values.  

weakest  link mechanism controls  the strength of g l a s s  in compression,  the 

observed  s i z e  effect would a l so  appear  i n  monolithic columns.  Lastly,  

the  c ros s - sec t iona l  a r e a  to  c i rcumference r a t i o  of the l a r g e r  segments  is 

g r e a t e r  than that  of the sma l l e r  segments;  consequently, a "skin strength" 

theory  could produce the observed s i z e  effect. 

First, the s m a l l  sample s i z e s  used m a y  not lead to  

Second, if a 

66, 533 ps i  I 56, 966 psi 
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3. Tri-Axial  ComPression Tes t s  

J 

T e s t  Segment Me an  Hydrostatic 
No. Size P r e s s u r e  (ps i )  Environment 

1 2"XZ" 0 Air 

2 l"x1" 0 Air  

3 1 "x 1 I t  10, 000 Mil-H-5606A 
b y  d r auli  c 

4 1 "X 1 I t  2 0 , 0 0 0  Oil 
(Red) 

If, as we contend, premature  fa i lure  of a segmented column is 

caused by the presence of t r ansve r se  tensi le  s t r e s s e s ,  d ramat ic  i nc reases  

in axial  compressive s t rength can be anticipated through the application of 

a l a t e ra l  compressive p r e s t r e s s .  In the tes t s  descr ibed in  th i s  section, it 

was pragmatic to  apply the l a t e ra l  p r e s t r e s s  by means of a hydrostatic 

p re s su re .  

wrapping the member  with high s t rength tendons o r  perhaps shr ink fitting 

a jacket about them. 

In  r e a l  members  the l a t e ra l  p r e s t r e s s  may be achieved by tension 

Axial S t r e s s  at 
Fa i lure  ( p s i )  

- 
29, 600 

30, 400 

58, 400 
72, 200 

The t r i -ax ia l  compress ion  setup shown in F i g .  12 was used to  de t e r -  

mine the ultimate c<ompressive s t rengths  of segmented column specimens 

s imi l a r  to that i l lustrated in  F i g .  13. 

columns to  a n  axial  force in  addition to  a hydrostatic p re s su re .  The t e s t  

resu l t s  a r e  summar ized  in Table 2 where we observe  that the inc rease  in  

axial  failure s t r e s s  is g rea t e r  than the l a t e ra l  s t r e s s .  When interpreting 

the t e s t  results,  one must  bear  in mind that only the axial  force can produce 

t r ansve r se  tensi le  s t r e s s e s  since the fluid penetrates  between the segments .  

The apparatus  used subjected the 

D. Design Implications of the Interface P rob lem 

Using the setup shown in Fig. 7, the compress ion  s t r e s s - s t r a i n  

cu rves  were determined fo r  a number of segmented columns under  severa l  

d i f fe ren t  c i rcumstances,  Three  such cu rves  a r e  shown in F i g .  14 where 
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Fig.13 TYPICAL TRI - A X I A L  SPECIMEN 
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we observe the genera l  charac te r i s t ic  of a monotonically increasing slope 

o r  stiffness. 

elasticity of monolithic g lass ;  however, the lapped spec imen has  the 

grea tes t  st iffness at the low s t r e s s  levels.  

possibility of descr ibing a segmented l inear  material by an  equivalent non- 

l inear  mater ia l .  

possibility exis ts  that  a segmented column can be s table  at high loads and 

unstable a t  a lower one, 

ing the column, but not without a weight penalty. 

The slope of each of the curves  approaches the modulus of 

This  s i ze  effect precludes the 

Because of the monotonically increasing s t i f fness ,  the 

This  problem can  be circumvented by p r e s t r e s s -  

One fur ther  complication is found when the reproducibil i ty of a 

s t r e s s - s t r a i n  curve  is examined, 

unloaded, the stress- s t r a in  curve is a lmost  perfect ly  reproducible in  the 

sense  that continuous loading and unloading produces s t r e s s - s t r a i n  

coordinates which fall on the s a m e  curve.  

of the segments are  disturbed af te r  loading and unloading, the subsequent 

s t r e s s - s t r a i n  curve will  be different  and somet imes  quite different.  

As long as a c o l u m n i s  never completely 

However, i f  the re la t ive posit ions 
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IV. LOAD-DEFLECTION CHARACTERISTICS O F  
PRESTRESSED SEGMENTED BEAMS 

This  chapter  considers  the problem of predicting the load- 

deflection relat ionship of a p res t r e s sed  segmented bending member  f r o m  

a knowledge of the proper t ies  of its component ma te r i a l s .  

an  attempt is made to  re la te  bending behavior to  s imple column behavior.  

The approach used to  accomplish th i s  objective consis ts  of establishing a 

first o r d e r  analytical  model of bending behavior and studying how closely 

the proposed assumptions descr ibe  the actual conditions found in  r e a l  seg-  

mented beams .  

Specifically, 

A. Mathematical  Models 

Two dist'inct mathematical  models have been developed to account 

for the segment  separat ion which occurs  during the bending of a segmented 

beam. The first of these,  the incremental  model shown in  F i g .  15a, con- 

s i d e r s  the beam a t  some instant during the  loading p r o c e s s .  

the beam is i n  equilibrium with the applied moment M(x), and in general ,  

c r acks  will  have penetrated into the beam section for some  distance along 

the segment  in t e r f aces ,  

the bending moment at a s ta t ion along the beam is establ ished in  a s t ra ight -  

forward manner  f r o m  moment equilibrium. 

moment  

can  be calculated as the l inear  response  of the uncracked beam sect ion.  

The total  live load def lect ion is then found by summing a l l  such infinitesimal 

r e sponses  which occur  between M(x)  = 0 and M(x) = M(x)lfinal. 

At this  instant 

The relationship between c r a c k  penetration and 

If a n  additional infinitesimal 

6 M(x) is added to  this  beam, the result ing inf ini tes imal  response  

In the  second model, the equilibrium model shown i n  Fig.  15b, 

the beam is considered in  its final loading s ta te .  The port ion of the beam 

which is uncracked is considered to  be a n  e las t ic  beam under the ex terna l  

loading M(x) and the in te rna l  loading caused by the p r e s t r e s s i n g .  

the deflection of an  e las t ic  beam can  be uniquely de te rmined  for every  

loading, the deflection of  the en t i re  beam can be viewed as the deflection 

of the  uncracked portion. 

Since 
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1. General  Formulation of the Bending Models ( Z e r o  Stiffness Tendons) 

Formulat ion of the incremental  and equilibrium models will  p ro -  

ceed under the following assumptions: ( 1 )  the segment material is l inear ly  

e las t ic  up to  its ult imate compressive strength, ( 2 )  the in te r faces  a r e  

absolutely flat, ( 3 )  the tendon stiffness i s  zero  (negligible compared to  the 

segments) ,  (4) the tendons a r e  constrained to  deflect with the segments  

( th i s  e l iminates  any beam-column action), (5)  the number of segments  is 
infinite, and ( 6 )  the resultant pres t ress ing  force is located within the sect ion 

k e r n  ( this  precludes the existence of tensile bending s t r e s s e s  and hence 

cracking under ze ro  external  load). 

a) Crack  Penetrat ion-  Moment Relations hip 

If the bending moment at a section of a p r e s t r e s s e d  segmented 

beam is continuously increased  f r o m  zero, we experience conventional 

e las t ic  behavior until a net tensi le  s t r e s s  becomes incipient in  say  the 

bottom f ibe r s .  As the moment is increased further,  c r acks  are formed 

between the segments  (segment  separation) at the bottom of the section, 

That pa r t  of the c ros s - sec t ion  which is not penetrated by c r a c k s  r ema ins  

l inear ly  e last ic .  

l inear ly  distributed with a ze ro  tensi le  s t r e s s  in  the bottom f ibers  and 

compress ive  s t r e s s e s  in the top f ibers .  

block shown i n  F ig ,  16a. 

The s t r e s s e s  in  this  portion of the sect ion must  be 

These conditions yield the s t r e s s  

Specializing to  the rectangular beam (F ig .  16b), the var ious 

proper t ies  of a cracked sect ion may be writ ten a s  functions of the c r a c k  

penetration f .  

A = b ( d  - f )  

I =  

C 

b(d - f )3  

1 2  C 

n = (d - f ) /2  ( 7 )  
C 

where  Ac, IC, and n 

dis tance f r o m  the centroid to  the outer fiber of the unseparated portion of 

a c r a c k  beam section. The 

a r e  respect ively the a rea ,  moment of iner t ia ,  and 
C 

The width and depth of the beam a r e  b and d .  
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condition of ze ro  s t r e s s  in the bottom fiber gives us  a relat ion between 

the bending moment M and the penetration. Hence, 

12 

o r  

- 3 e  3M d f =  F - 2  ( 9 )  

where F is the resul tant  pres t ress ing  force o r  tendon force  and e is its 

eccentr ic i ty .  

one c r i t e r ion  defining the uncracked regions of the span  is s imply f ,< 0. 

Using Eq.  6, and 9, the moment of inertia of an  uncracked c ross - sec t ion  

becomes 

In rectangular  beams where negative moments  do not occur ,  

(10)  
3 I = ~ ( l -  BM) 

C 

d 
2 W e  observe  that I approaches z e r o  as M approaches 1 / p  = F ( e  t - ). 

Consequently, for the case  of ze ro  stiffness tendons both the deflections 

and the s t r e s s e s  become unbounded for a finite value of the loading. 

b)  Incrementa l  Model 

Consider a p r e s t r e s s e d  segmented beam subjected t o  a d i s -  

tr ibution of non-negative bending moments of the form 

where  P is a load intensity parameter  and x is a coordinate along the 

span.  

sett ing f = 0 in  Eq. 9 , thus, 

The moment requi red  to c r a c k  this beam, Mc, can 'be  f m n d  by 

M = F ( e  t -$) 
C 



rhe load pa rame te r  associated with the appearance of the first c r a c k  in  

he beam is given by 

rhe corresponding deflections A can be found by conventional methods; 

o r  example,  
C 

p c g ( x )  - F e ]  m 
dx Ac = [  E1 

S 

ihere  E is the modulus of e las t ic i ty  of the segments ,  I is the pr incipal  

noment of iner t ia  of the uncracked beam section, m is the vir tual  moment  

esultirig f rom a unit load placed at the point and in the direct ion of the 

e s i r e d  deflection and S r ep resen t s  the portions of the span  which a r e  

ncracked ( h e r c ,  the en t i re  span).  When the beam is in  equilibrium under 

loading P which is g rea t e r  than P the beam span is divided into the 
C’ 

racked portions Sc defined by M(x) b M c  and uncracked portions S 

efined by M(x) < M . 
nfinitesimal load dP,  

If the loading on this  beam is increased  by the 

the result ing infinitesimal response 
C 

dAk is given by 

C 
S S 

‘he total  deflection A for loads g r e a t e r  than Pc can be found by summing 

l e  infinitesimal responses  and adding the cracking deflection A c.  Hence, 
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also,  f- r 1 

c )  Example: Termina l  Couples by Incremental  Method 

Specializing Eq. 15, 17 and 18 to  the case  of a rectangular  beam 

under t e rmina l  couples C we obtain for  the cent ra l  deflection 
Lr 2 c L/2 

(C - F e )  (x/2) 
dx d P  C 

( 1 7 4  
I zi::;;:;c)3 A = 2 j  -dx+O+ 

0 

d - - L2 F(e  t T ) , ( C < F ( e  d t 7 )  
c c  0 

1 6 E @  (1 -P  C)' 

Lf  2 

d ( C - F e )  L2 C < F  ( e t  -6) = Cc - - 3 ( C - F e ) L 2  - - 
Z E b d 3  8 E d  1- pCJ3  

where  m = x/2, P was replaced by C , and g(x) 1. The value of C 

is l imited by the compress ive  s t rergth of the material u0. 

compress ive  s t r e s s  i n  the cracked section is given by 

The maximum 

U = -  2F2@ 
top 3b (1-  P G )  

F r o m  this  we find the limiting moment to be 

1 -  d 
F(T We note that  when C+- - 

maximum stress cr 

t e ) both the deflection Aand the 

become infinite. 
P 

top 
The load deflection d i ag ram and the c r a c k  penetration d i a g r a m  

a r e  shown in  Fig.  17 fo r  a rectangular  t i tanium-carbide beam with the 

following cha rac t e r i s t i c  s : 
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b = 2 in. 

d = 4 i n .  

e = 0.5 in. 
6 E = 6 0 x  10 ps i  

P = 160 kips 

I = -500,000 ps i  
OO 

d. Equilibrium Model 

Returning to  the beam t rea ted  i n  Section (b), we shal l  formulate 

the deflection problem by considering the beam in equilibrium under its 
final s ta te  of loading. If no c racks  have formed in the beam, that is i f  

M(x),< Mc, the deflection is identical to  Eq. 18, i. e., 

A =  I (Mi:e) m d x  M(x I,( Mc (21)  
S 

On the other  hand, when pa r t  of the span has been penetrated by c racks  

the deflection becomes 

e .  Example: Termina l  Couples by Equilibrium Method 

F o r  the cent ra l  deflection, Eq. 22 special izes  a s  follows: 

- - [C-F(e t $)] L2 - - L2 

8 E a ( 1 -  p C ) 3  1 6 E a/? ( 1 - @  C I2 

We observe  that the two models produce identical r e su l t s  for  te rmina l  

bending, but that  the equilibrium model is analytically much s impl ie r .  

a l l  of the c a s e s  studied, with zero  stiffness o r  e las t ic  tendons, both models 

always produced identical load-deflection relationships.  

In 
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f .  Example: Concentrated Load on a Simple o r  Cantilever Beam 

The constant bending moment associated with te rmina l  loading 

suppresses. severa l  of the complications which a r i s e  in  the general  loading 

case .  

integrands of our  two formulations.  These occur at discontinuities in the fo rm 

o r  slope of the external bending moment diagram, at the point of application of 

the virtual unit load, and a t  the stations separating the cracked and un- 

cracked portions of the span. 

handled, the genera l  deflection analysis  of an  end loaded cantilever is 

formulated i n  Fig.  18 and 19 using the two models. Both formulations 

lead to  impressive algebraic  problems which produce, nevertheless ,  

identical  closed f o r m  solutions. Instead of presenting these resu l t s ,  we 

shal l  descr ibe the general  solution for the deflection curve of a simply 

supported beam subjected to  a concentrated load placed anywhere in the 

span. The solution for the cantilever is, of course,  embedded in  this 

solution which is given in Fig.  20. 

For example, a number of spanwise discontinuities appear  i n  the 

To i l lustrate  how these discontinuities a r e  

2. Simply Supported Beams with Elast ic  Tendons 
(E quili b r iu m Met hod) 

In general  the tendon force will not r ema in  constant a s  the 

magnitude of the loading on the beam i n c r e a s e s ,  This fact  introduces 

another complication into the mathematical  descr ipt ion of the bending 

behavior of p r e s t r e s s e d  segmented beams. 

loadings - t e rmina l  couples - i s  t ractable  without r ecour se  to  a computer .  

The equilibrium method was chosen in  this section because of its analytic 

simplicity.  Although it was a l so  programmed for the computer ,  t he re  is 

a possibility that  the 

In fact  only the s imples t  of 

incremental  model is be t te r  suited for this  purpose.  

a .  General Relationships 

If the applied bending moment distribution, M(x), is represented  

in  the form of Eq. 12 

where P is a load intensity pa rame te r  and x is a coordinate along the 
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pan, then the tendon force F may be expressed a s  a function of P , i. e .  

F = F(P) (23)  

'he initial tendon force o r  p r e s t r e s s ,  Fo , is defined when P = 0, i. e . ,  

To = F(o) (24) 

efine 

le uncracked portion of the c r o s s  section. Referr ing to  Fig. 16, for 

ectangular c r o s s  section, 

T to be the resultant moment acting about the "neutral  axis" of 

(25)  T = M - F ( e t T )  f 

he c rack  penetration f becomes 

M d 
f = 0 ,  for  T \ < e t T  

6T M d 
f = d - ~ ,  f o r T > , e t  77 

hus the resultant moment may be fur ther  expressed  as 

M d T 3 M - F e  , for -,!<e t 
I' U 

T = - 1 [F(e t -z) d - M], for  M z e + - g  d 2 
'he section proper t ies  may be expressed  as 

A = A(M) 

A = A(o) = b d  

A = b (d-f)  = 
0 

T 
6bT C 

I = I ( M )  

I = I(0) 
0 

(29)  

may  be expressed  a s  
A 

or a simply supported beam, the deflection at x = x 
L 

'0 
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where 

The slope at the left end is given by 

and the slope at the right end is given by 

0 
where 

( 3 4 )  

(35)  

Dividing the beam into i t s  uncracked portions 

cracked portion Sc , M/F),e t d/6, and utilizing Eq. 27 and 29, Eq. 3 0  

may be expressed  a s  

S , M/F< e t d/6, and its 

J T m A d x  t . w  F3 I mAdx 
A =E- T Z  

O S  sC 

Similarly,  Eq. 3 2  and 3 4  become 
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If M(x) is represented  in  the fo rm of Eq. 12,  then 

FoeL 

2 E I o  QL0 = QL(o) = - - 

If A and E a r e  respect ively the c r o s s  sect ional  a r e a  and the t t 
modulus of e las t ic i ty  of the tendon, and i f  f L  and fR r e p r e s e n t  respect ively 

the c rack  penetrations at  the left and right ends of the beam, then the 

change in  the length of the tendon may be expressed  a s  
1 

Regrouping this  equation into a m o r e  convenient form,we obtain, 
fL fR 

( e  t -) ( 8  - 8  ) t ( e t  -) (0 - 8  ) 2 L Lo 2 R Ro 
F = F  + (43) 

0 L 
L t + J +  

*t Et 0 

Now, given the loading M(x), the value of the tendon force  F may be d e t e r -  

mined f rom Eq. 43; however, even in  the s imples t  case ,  M(x) = constant,  

F cannot be determined explicitly. 
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b. Example: Termina l  Couples - Central  Deflection 

Returning to  the example of a rectangular beam under t e rmina l  

couples, M(x) = C, we may now determine the effect  of tendon s t i f fness .  

F o r  this  very  special  ca se  the spanwise integrations a r e  ve ry  simple and 

Eq. 36 and 38 may be expressed  as 

(44 

(45 

The resul tant  moment f rom Eq. 27 becomes 

T = C - F e  , f o r T , < e  C t 6  d 

d C d 
6 >,e t [ F ( e  t - ) - C], for 

1 
2 2 

T = -  

Case  1. Before Cracking: F< C e t -6 d 

Thus 
(C - F e )  L 

0 
2 E I  Q =  

f L =  fR = 0 

L 
L I, *=x- 0 

Inser t ion  of Eq. 47, 48 and 49 into Eq. 42 yields 
- L e  

= F o  K1 
where  

- d 2  *oE J 
K1 1 t - [l t AT t t  12 

(49) 

(51) 
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FromEq. 46 
2 - 

T = C (1 - T) e - Foe 

From Eq. 44, the center  deflection is 
7 

The value of the cracking load, C_, may be found f r o m  
L. 

d d C C = Fc ( e  t T )  = (Fo t -R;) (e  t 7) 

Thus 
Fo(e 4- * )  d 

1 - - ( e t  d l  
c =  

e C 

'b K 1  

C d 
6 Case  2. After Cracking: >/ e t 

- - F3L - - FL T L  F3 o =  =' 1 8 b T 3  3 6 b E T 2  

d C ) = - 3 ( e t T ) +  d 3~ C 
fL = f R  = d - 3 ( e t -  2 -F 

L 
3 b [ e  t ---I d C 

0 2 F 

Define 

- d 
2 K 2  = e t -  

- c  v = T  

(54)  

(58) 

(59)  

Inser t ion of Eq. 55, 56 and57 into Eq. 42 and utilizing Eq. 58 

and 59 yields 
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54 e 2 

F 
F - = l t  

1- 0 3 b(KZ-V) E 

This  is  the best  that  can  be done algebraically. 

F = F(C), a plot of F vs.  v is made which is  subsequently modified to  a 

plot of F vs. C. 

In o rde r  t o  de te rmine  

F r o m  Eq. 44, the center deflection is 

L (61) 
F3 - F3L2 - F3L2  

T L 2  3 - 1 4 4 b E T 2  d 3 6 b E  F ( e  t 7) - C] 
A = ' -  

where the corresponding values of F and C must  be substi tuted s imul -  

tane ou s ly . 
Inspection of Eq. 60 revea ls  some interest ing cha rac t e r i s t i c s  

of e las t ic  tendons. When v attains a cer ta in  value, 

is ze ro  and F has  a discontinuity. 

v u  , the denominator 

3 b (K2-vu) E 3vU - K2 
Y2 

U 
1 t  3(K2 - v ) 

*tEt 

Solving Eq. 62 for vu yields 

Now v = v 

value that  v at ta ins .  The c rack  penetration is given by 

with F = 03 implies  that C = 03 and thus vu is the maximum 
U 

f = 3v - 3K2 

and s ince v at ta ins  a 

f = d -  
max b E  
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The implication of Eq. 65 is as follows: 

have zero stiffness,  the c racks  will  open all the way ( f  = d )  at some  finite 

load and this  pe rmi t s  a n  infinite deflection at that load. 

the cracks will  never open completely and a n  infinite deflection can  only be 
attained with a n  infinite load. 

When it is assumed that  the tendons 

With elastic tendons, 

A numer ica l  example is i l lustrated i n  Fig.  21 and 22. F igure  21 

i l lust rates  the determination of F vs.  C while Fig. 22  compares  the r e su l t -  

ing load deflection curve to  the corresponding ze ro  stiffness tendon (F=F ) 

curve .  In this  example, it is observed that  beyond the cracking load, the 

elast ic  tendon makes a significant contribution to  the load deflection curve.  

0 

C .  Numerical Computation Scheme 

In o r d e r  t o  facil i tate the analysis  of p r e s t r e s s e d  segmented beams 

with elastic tendons under more  complex loadings, a numerical  scheme has  

been developed for use  on a digital computer .  

scheme involves nothing more  than tne evaluation of in tegra ls  using 

Simpson's 1/3 rule  and routines for the determination of the tendon force  

and the cracking load. 

Essentially,  the numer ica l  

In this  section, the applied bending moment distribution, M(x), 

will  again be expressed  by Eq. 12 

M(x) = P g b d  ( 1 2 )  

However, now the load intensity pa rame te r ,  P , will  be chosen such that  

i .  Determination of Cracking Load 

The cracking load, Pc , may be expressed  as 

P = F c ( e t - g - )  d 
C 

where F is the tendon force  corresponding to  P = Pc. For 0 4  P( Pc , 
everything behaves l inearly,  s e e  F i g .  23, and F is express ib le  as a 

l inear  function of P, i. e . ,  

C 
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Fi 9.23 GENERAL LOAD DEFLECTION DIAGRAM 

Fig.24 SECANT METHOD FOR DETERMINING THE TENDON FORCE 
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d Let us  a rb i t r a r i l y  choose P = PI = Fo ( e  t 7)  and solve Eq. 43 for  F'. 
Having PI and F', y in Eq. 67 may be determined as 

Eq. 67 now becomes 

P 
) 

F'-F, F = F  
0 FO 

Insertion of P = Pc and F = F into Eq. 69, 
C 

sing Eq. 66, 

(69)  

ields the 

cracking load 

F o ( e + + )  2 

2 Fo - F' (70) 
P =  

C 

d where  F' is determined f r o m  Eq, 43 with P 2 PI = Fo(e t 7). 

ii. Determination of Tendon F o r c e  

In general ,  Eq. 43 r ep resen t s  a n  implicit  re la t ionship between 

Thus a n  i terat ive s c h e m e  is the tendon force  

necessary  to  de te rmine  F. 

F and the load intensity P. 

One such scheme is  the secant  method. 

Refer r ing  to  Eq. 43, define 

fR ) t ( e t - ) ( Q  - 8  ) f L  
2 R R o  ( e  -t ( QL - QL" 

D = F  t - F  
0 Lr 

L t -  1 )+ 
*tEt E 

0 

Thus, given the value of P , the value of F is sought which makes  D = 0. 
- 

Define Fn to be the nth e s t ima te  of the tendon force  F and Dn 

to be the corresponding value of D. Thus Eq. 71 may  be expres sed  as 

D n = Dn (P, Fn) (72 )  



and y n ,  D Fig.  24 i l lus t ra tes  how the secant n- 1 n '  
Given F D n-1 ' 

method is used to  de te rmine  the following expression for  the n t  1 es t imate .  

In o r d e r  to use  Eq. 7 2  and 73 ,  all that  is needed is two ini t ia l  

guesses:  F1 and F2 . Once s ta r ted ,  the procedure is to  mere ly  cycle 

back and for th  between Eq. 7 2  and 73 until Dn becomes sat isfactor i ly  

small enough, 

F igure  23 i l lus t ra tes  that  the numerical  scheme was programmed 

to increment  P by 6 P for P > P . Thus when computing the "new" 

value of the tendon force,  P 

the old value of the tendon force,  

of F 

C 

Fnew , corresponding to  the "new" load, new' 
is available as a first es t imate  Fold ' 

new' 

Thus,  it s e e m s  logical t o  specify F and T2 as follows: 1 

- 
(74)  

These  e s t ima tes  were  used in  the program and for  the lower values of 

load the routine worked perfect ly .  

load it became apparent  that  these est imates  were  causing Eq. 7 2  to  

yie Id discontinuous r e su l t s  . 

However, for  higher values of the 

Reflecting back to  the previous section where  the example of 
t e rmina l  couples was investigated, the tendon fo rce  was expressed  as 

a function of the ra t io  of the te rmina l  couple and itself and that  for  a 
ce r t a in  value of the rat io ,  the function was discontinuous. 

th i s  characte;.istic 

i n  gene ra l  F is a function of V where V = P/F and F is discontinuous 

at V 7 V . See Fig.  25a. 

It now s e e m s  that 

is preserved  with more complex loadings and thus 

U 



F A i  

Fold 

Fo 

F A  

P P % ‘old new 0 

( E )  TENDON FORCE vs. LOAD INTENSITY 

4 
I 
I 
I 
I 
I 
I 
I 
I 
I 
i 

------ 

I I 
I 
I 

I 

’ 

P 
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Thus a s  the load increases ,  V approaches V and the r a t io  
U 

m a y  exceed V generating erroneous values of D.  In o rde r  n e w IF o 1 d u ,  
to  prevent the r a t io  Pnew/F1 f r o m  exceeding V 

prove the init ial  es t imate  of Fnew , 7, and Fz a r e  chosen as: 

and to  otherwise im- 
U 

P - new - 
F1 Void - Fold (&) 
- .Fz = t D1 ( 7 7 )  

The es t imate  F1 improves with increasing load s ince V approaches a 

constant with increasing load. F igure  25b i l lus t ra tes  the relat ive place-  

ment of Fold , F and Tl. new 

iii. Computer P r o g r a m  

A computer  p r o g r a m  was written which re f lec ts  the numer ica l  

scheme developed in  this  section. 

flow d iag ram shown i n  Fig.  26. 

in such a way,that the loading function g(x) could be isolated.  This  makes  

i t  possible to  effect loading modifications without changing the body of the 

p rogram.  

Its  g ross  features  a r e  i l lustrated in  the 

It was convenient t o  wri te  this p r o g r a m  

The var ious assumptions made in  the genera l  formulation of the 

bending problem apply to  the computer  program. 

is fu r the r  r e s t r i c t ed  to: 

In addition, the p r o g r a m  

1. Rectangular c r o s s  sections 

2. Simply supported beams 

3 .  

4. 

Load sys t ems  which produce non-negative bending moments  

Tendons which l ie  in a single horizontal  plane,  

d. P r o p e r t i e s  of P r e s t r e s s e d  Segmented Beams 

Using the computer p rogram descr ibed in the previous section, 

it has  been possible to quickly investigate some of the important proper t ies  

of segmented beams.  Certainly,  one of their  most  provocative cha rac t e r i s t i c s  
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Fig. 26 OVERALL FLOW DIAGRAM FOR COMPUTER PROGRAM 
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s t ems  f r o m  the possibility of approximating their  load-deflection d i ag ram 

by one which is elast ic-perfect ly  plastic.  

of using the methods of l imit  analysis for segmented s t ruc tu res .  

t o  point out that  the p r e s t r e s s e d  segmented beam is completely elast ic ,  

and consequently, the unloading curve wil l  differ f rom that of a n  e l a s t i c -  

perfect ly  plast ic  beam. Fortunately, however, the upper and lower limit 

analysis  theorems do not depend on the unloading cha rac t e r i s t i c s  of the 

mater ia l .  

This suggests the possibil i ty 

We hasten 

8 

When a simply supported elastic-perfectly plastic beam is sub- 

jected to a sufficiently la rge  cent ra l  load, a plast ic  hinge forms in  the 

center .  

undistorted.  The s imi la r i ty  between this  type of deflection pat tern and that 

of the corresponding p res t r e s sed  segmented beam can be infer red  f rom the 

deflection curves  shown in  Fig. 27 for a segmented member .  

Those portions of the beam away from the center  r ema in  practically 

The influence of tendon eccentricity can be ascer ta ined  f r o m  the 

load-deflection d iagrams shown in F ig .  28 for values of e which vary  

within the l imi t s  of the kern .  

a r e  found to  fall off rapidly with decreasing eccentr ic i ty .  

of ze ro  eccent r ic i ty  investigated, the influence of tendon stiffness was 

found to  be ex t remely  slight suggesting that the s impler  deflection analysis  

using zero  s t i f fness  tendons might be appropriate.  

The stiffness and s t rength at  l a rge  deflections 

In a l l  of the c a s e s  

Selecting 

dominant, a s e r i e s  of load-deflection curves were  plotted for var ious  ra t ios  

of beam st i f fness  to  tendon s t i f fness .  

zero st iffness approximation is not appropriate for the extreme values of 

e c c e nt r ic  i t  y . 

e +. 0. 66 where the tendon stiffness i s  the most  p r e -  

It appears f r o m  Fig- 29 that  the 

To  complete the study of beam pa rame te r s ,  load-deflection 

The d iagrams are shown in Fig. 30 fo r  different values of p r e s t r e s s .  

s t rength is found to  vary  l inearly with the p r e s t r e s s  level. 
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F i g . 2 8  EFFECT OF TENDON ECCENTRICITY ON THE LOAD- DEFLECT 
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3. 

a ,  

Relationship Between Theory  and Experiments  

Relationship Between Moment of Iner t ia  and Area  

It has  previously been indicated that the interface contact a r e a  

of a segmented column inc reases  with increasing compress ive  force .  

comparing the st iffneqs of a segmented column to that of an  equivalent 

monolithic column, we can obtain the effective a r e a  of the segmented column 

at any load. In the case  of a l inear ly  e last ic  ma te r i a l  (F ig .  14), the 

effective a r e a  a t  load P is given by 

By 

- - L (slope of load-deflection curve  at p)  *e f f  

where L is the span length o r  gage length of the column and E is the 
modulus of e las t ic i ty  of the segments .  

the actual contact a r e a  between any two segments  may be higher o r  lower 

than Aeff. Aeff averages  the effects of a l l  of the contact a r e a s  

within the gage length. 

average  real  contact a r e a  is probably l e s s  than A 

I t  is important  to  emphasize that  

That is, 

Since the segments  a r e  finite in number,  the 

eff '  

The procedure for  determining the effective moment of iner t ia  

I for a p r e s t r e s s e d  segmented beam para l le l s  that  used to  find Aeff, 

that  is, we compare  the init ial  st iffness of a segmented beam under a 

p r e s t r e s s  F 

a l inear ly  e last ic  ma te r i a l  we obtain, 

e f f  

and te rmina l  couples to  a n  equivalent monolithic beam.  F o r  

(init ial  slope d the t e rmina l  couple-end rotation curve)  ( 7 9 )  
- L 

'eff - - 2 ~  

where  

force F. As in the c a s e  of the segmented column, the actual moment  of  

i ne r t i a  at any station of the beam cannot be infer red  f r o m  I 

a.verages the effects of many segments .  This  si tuation has  a n  

important  consequence, 

the charac te r i s t ics  of a ce r t a in  few segments ,  the beam will  exhibit random 

behavior.  We would, for example,  expect t o  find m o r e  var iabi l i ty  in the 

cen t r a l  deflection of a central ly  loaded beam than one subjected t o  t e rmina l  

couples.  

L is  the span length and where  the beam is under a p r e s t r e s s i n g  

which 
e f f  

If the deflection of a beam is ve ry  sensi t ive to  

Because of the shape of the moment  d i ag rams ,  the central segments  



i n  the f o r m e r  case  have the g rea t e r  influence on beam deflection. 

A necessa ry  condition in the development of a genera l  analysis  

capability is the prediction of bending behavior f r o m  a knowledge of simple 

tension o r  compress ion .  

the c a s e  of segmented members  i s  to  establish the relationship between 

Nww, i f  the contact a r e a  is  uniformlv distributed over  the Aeff and Ieff' 
segment in te r faces ,  the moment of inertia of a rectangular  cross  sec t ion  

with n pe r  cent contact is simply 

The f i r s t  s t ep  in  satisfying this  requi rement  for 

bd I = - n  
12 

where 

n ='  Aeff/bd 

On the other hand, i f  the total  contact a r ea  is confined to tlie region about 

the neutral  ax is  we obtain the minirrium possible moment  of iner t ia ,  I r r , i n  

- bd3 3 - - n  min  12 
I ( F i Z j  

Tbc maximum moment of iner t ia  I corresponds to  the syr-nnietrica! 

placement of the contact a r e a  a t  the top a i d  bottom of the  cross sflc!ioii, 

hence, 

max  

and I a r e  shown i n  min  The types of contact corresponding to I 
Fig,  3 1 for segments  which a r e  partially separa ted .  

rnax 

inas 
l i e s  between I 'e f f  Although it is c l ea r  that on the average 

and Imin, 
iner t ia  I given by Eq.  80, o r  t o  the average of the ex t r eme  values, 

it is not evident whether it i s  equal to  t h e  average  moment of 

t I )/2 , o r  t o  some other measure .  Experimentally,  we can max min  (1 
find the ave rage  Ieff f r o m  ei ther  the terminal  couple-end rotation 

of a long segmented beam ( m a n y  segments),  o r  f rom the average  of thc 

effect ive moments  of iner t ia  obtained from a number of beams tes ted undF'r 

a genera l  loading. Unfortunately, neither of these t e s t s  were  scheduled 

for  this  f i r s t  p rog ram phase and any conclusions regarding the relationship 

curve 
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between A and Ieff must await our future studies. eff  

b. Centrally Loaded Simple Beam Tes ts  

Using the t e s t  fixture and the prestressed glass beam shown in  

Fig. 32, we obtained central  load-central  deflection diagrams for p re -  

s t ress ing forces  of 4, 6, 8 and 1 2  kips. 
through 3 6 .  

indicate the sca t te r  which resul ts  f rom removal and reapplicaticm of the 

pres t ress ing  force.  

compressive load-deflection charac ten  stics of the segments were  measured 

in  situ a t  the middle and two ends of the member using the technique illus- 

t ra ted in  F i g .  37.  

the axial load was never completely removed f rom the member.  The 

resulting three load-deflection diagrams shown in F i g .  38 a r e  almost 

identical indicating that the 10 in o r  20 segment gage length is adequate 

for estimating the effective a r e a  

The resul ts  a r e  shown in F i g .  3 3  

For  the 6 kip and 8 kip cases ,  two separate  tes t s  were  run to  

P r i o r  to the performance of these bending tes t s ,  the 

To  prevent relative movement between t h e  segments,  

*e f f *  

The average A (and hence n ) obtained from the compression 
eff 

t es t s  descr ibed in F i g .  38 have been used to compute I and Imjn  These 

values have in  turn  been used to define the bounds on the l inear portions 

of the load-deflection curves in  Fig. 3 3  to 36 .  

curves can  be found in the "cracked" range i f  n continues to hold for the 

unseparated portions of the c r o s s  section. 
cribed in  Section IV-2-ciii was modified to reflect  the two extreme contact 

a r e a  distributions shown in Fig. 3 1 and the resulting extreme load-deflection 

curves a r e  plotted with the data in Fig. 33 to  36.  

that these curves  are not bounds on the performance of an  individual beam; 
but ra ther ,  they a re  bounds on the average load-deflection curve of many 

beams. 

between these bounds, 

max 

Bounds on the load-deflection 

The computer program des-  

It must  be pointed out 

As it tu rns  out for  the beam considered, all the data falls on o r  
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Fig.37 COMPRESSIVE LOAD DEFLECTION DETERMINATION 
IN SITU 
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c .  Interpretation of the Experiment.al Resul ts  

Recognizing that the s ta t is t ical  nature of the interface contact 

problem precludes the prediction of the initial bending stiffness of any 

particular beam, we proceeded to choose a moment of iner t ia  which matched 

up the initial slope of the bending data .  

uniformly distributed over the c r o s s  section, matching the I is  tantamount 

to defining the beam width a s  

resu l t s  in a straightforward manner  to  obtain theoretical  curves  for each  

level of p r c s t r e s s .  

remarkable  agreement  between the theory and the experiments  in  the 

"cracked" rcpions.  The curves  werc,  of course,  choos tn  to match in  the 

l inear  regions. Consequently i n  the range of pa rame te r s  considered, we 

have reduced the prediction of fhe load-deflection d i ag ram of a p r e s t r e s s e d  

segmented beam to  the determination of the one pa rame te r  n. That is, i f  

Ic f f  can be re la ted to A 

Assuming that the contact a r e a  is 

nb. On this  basis  we can apply our previous 

The resu l t s  a r e  shown in F i g .  39 where we observe  a 

we have solved the bending problem. eff  

In  the present  s e r i e s  of tes t s ,  i t  was found that the effects  of 

shea r  deflection and beam-column action were  negligible re la t ive t o  the 

bending deflection. There  a r e ,  howcvcr, pract ical  situations where these 

c f f r c t s  can become quite pronounced. 

At this t ime i t  i s  thought that  the validity of the present  analysis  

will improve a s :  

1 .  

2. the pres t ress ing  force inc reases  

3 .  the interfaces  become f la t ter  

4. 

the number of segments  increases  

the bending problem m o r e  closely approximates  

the te rmina l  couple-end rotation c a s e  

the c r o s s  section approaches the ideal I -beam section 5.  

d .  Calibration and Tes t  F ix tures  

Before the bending fixture or the compressomete r s  were  used to 

measu re  the propert ies  of segmented members ,  their  reliabil i ty was investi-  

gated through the use of monolithic s tee l  and aluminum beams  and rods .  

The fixtures were  only accepted when the values of E obtained in bending 

and compression were within 2 per  cent  of each other and were  approximately 
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equal to  the published values.  

The p res t r e s s ing  tendons used in  the bending exper iments  w e r e  

p r e s t r e s s e d  and secured  with the s t rand-vice-gr ips  (Reliable E l e c t r i c  

Company) shown in  Fig.  40 . 
forces  w e r e  ma6e with s t r a in  gages attached to the steel wi re s .  

method was abandoned because of excessive s t r a in  gage slippage and dr i f t .  

The eventual u se  of force washe r s  provided an ex t remely  sa t i s fac tory  

method of monitoring the tendon force.  

in a s tandard jig, and as an  additional check, the en t i re  s t rand  was  

tensioned using the technique i l lustrated in  F ig .  41. 

der ived f r o m  the force  washer  could be compared d i rec t ly  to that recorded  

by the testing machine under the identical conditions which prevai led in  

the p re s t r e s s ing  a s sembly  . 

The first attempts to  m e a s u r e  the tendon 

This 

Each force washer  was cal ibrated 

In th i s  way the force 

Optical  flats were  used to measure  the f la tness  of the segment  

A monochromatic helium light source  was used  with a wave- in te r faces .  

length of 23. 1 x 10 - 6  in. 
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Fig.41 CALIBRATION CHECK ON T H E  FORCE WASHER 
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V. PRESTRESSED MONOLITHIC BEAMS 

A. Conventional P r e s t r e s s e d  Design 

- 

The usual practice in the design o f  monolithic p r e s t r e s s e d  con- 

The tendon c re t e  is to assume that the concrete has  zero tensile strength.  

positions and the associated pres t ress ing  forces  a r e  selected on this  con- 

servative bas i s .  

substantial, we have heen motivated in this  section to  take advantage of this 

latent load carrying capacity. 

characterization 

In the following subsection, we indicate that a s ta t is t ical  viewpoint is r e -  

quired for this  purpose, and as a consequence, the general  design approach 

demands the specification of a des i red  reliabil i ty level. 

Because the tensile strength of many brit t le mater ia l s  is 

Clear ly  then, our  first s tep  must  be the 

of the tensile strength of the brit t le mater ia l s  t o  be utilized .. 

B. The Probabi l is t ic  Nature of Structural  Design 

The basis for the conventional design of s t ruc tu res  is the assump-  

t ion that there  exis ts  a cer ta in  failure s t r e s s ,  independent of s ize ,  a t  and 

above which al l  samples  will fail and below which none will. Although i t  is 

known that no mater ia l  exhibits exactly this  type of behavior, ductile mat -  

e r i a l s  approximate it well enough to have permit ted the evolution 

deterministic design procedure.  

s t r e s s e s  a r e  distributed very tightly around the mean value-which is taken 

t o  be the failure s t r e s s .  

symmetr ical  distribution, exactly) fifty per  cent of the samples  will yield 

below, but very  close to, the mean value. There  a r e  two approaches taken 

t o  a s s u r e  that during the life of a s t ruc ture  none of its members  a r e  likely 

to  be s t r e s sed  beyond their  actual yield points. One is  the r a the r  obvious 

expedient of applying a factor of safety to  the observed mean yield s t r e s s ,  

and using the result ing est imate  of the failure s t r e s s ,  called the working 

s t r e s s .  

the mean yield s t r e s s  is used and a factor of safety is applied to  the design 

loads.  This la t te r  approach has gained acceptance in recent  years ,  perhaps 

on the grounds that there  is considerably more  uncertainty about the loads 

which will be applied to a s t ructure ,  par t icular ly ,  say, a la rge  bridge o r  

building, during i t s  l i fe t ime than there  is about the yield s t r e s s e s  of its 

of a 

Tes ts  on such mater ia l s  indicate that yield 

Now it is obvious that about ( in  the case  of a 

The other method is the limit o r  ult imate design technique. Here  



individual members .  

cumulative distribution of yield stresses are known, a reliabil i ty can be 

computed for  a s t ruc ture .  However, this  is not done in  practice,  since the 

safety fac tors  are  chosen so conservatively that the result ing reliabil i ty is 

very  close to  one-hundred per  cent. 

Using ei ther  approach, i f  the maximum loads and the 

In  the case  of br i t t le  mater ia l s ,  the distribution of fa i lure  

s t rengths  in  tension is one of large variability and, to all appearances,  

heavily dependent on the s ize  of the member ,  

property alone, a simplified design procedure analogous t o  the one used for  

ductile ma te r i a l s  is impossible. 

one in which the distribution of failure s t r e s s e s  is found experimentally and 

used to  determine the reliabil i ty of each member.  

lity of the s t ruc tu re  under a specified loading condition may be computed. 

F o r  example, i f  a simple f r a m e  were composed of th ree  members  having 

rel iabi l i t ies  of .99, . 98, and .95, the frame reliabil i ty would be (. 99) ( .  98) 
(. 95) = ,921. 

As a re su l t  of the second 

The most  promising scheme seems to be 

Thus, the overa l l  re l iabi-  

C. The Stat is t ical  Distribution of F rac tu re  Streneth 

The most  popular theory of the f rac ture  of mater ia l s  leading to 

a distribution of f rac ture  s t r e s s  is due to  Griffith. ‘6’ Basically it postu- 

la tes  that  i n  a volume of material there  a r e  a number of flaws, randomly 

distributed, which act  a s  s t r e s s  concentrators.  When the magnified stress 

at one of these  points reaches the theoretical  molecular strength,  a running 

c rack  develops and fai lure  occurs .  

specimens are commonly observed to  fail in tension at nominal s t r e s s e s  th ree  

o r  more  o r d e r s  of magnitude smal le r  than the molecular bonding strength.  

It a l so  implies  that  the probability of failure at a given stress will increase  

with the  volume of the specimen since the la rges t  flow in  a big volume is  

likely to  be g r e a t e r  than the la rges t  flaw in a sma l l  volume. 

This theory accounts for the fact that 

Recognizing that the Griffith theory leads to  a weakest link model 

fo r  the behavior of br i t t le  mater ia ls ,  Weibull E’ expressed  a formula for  

the probabili ty of fa i lure  as a function of the s t r e s s  distribution in  a body: 
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where  x is a n  intensity level; x 4 is the actual stress distribution in  the 

body; k, ,  f,, 5 ,  are space coordinates;  v is a unit volume; F(x) is the 

probability of f racture;  and my x u’ x 0 a r e  s ta t is t ical  distribution paramete1,s.  

Weibull’s theory has  been widely studied as a possible design tool for  

br i t t le  mater ia ls .  

such mater ia ls ,  it has  been adopted he re  for purposes of demonstration. 

F o r  a s t r e s s  cnndition of uniform tension, 

Because it r ep resen t s  the general  behavior pat terns  of 

g/ = 1 and the distribution of 

; x s x  
U 

F(x) = 0 

where x is the s t r e s s  level and V is the number of unit volumes in  the 

member .  

together with its associated probability density function f(x) = - 
volume has been incorporated into the scale  parameter  xo. 

parameter  x 

will fail  while 

ial. As shown in  Fig.  42b, as m 4 m  the behavior approaches that of the 

c lass ica l  

F igure  42a depicts this distribution of failure s t r e s s  for 2rcmcm 

The 

The location 

d F  
dx * 

may be interpreted a s  the s t r e s s  below which no sample 

m may be taken a s  a measu re  of the variability of the mater- 
U 

mater ia l  model - all samples  fail at exactly the same s t r e s s .  

F o r  convenience in  notation, the integral  over the volume, indi- 

cated i n  Eq. (84), is designated as B and called the r i s k  of rupture .  Since 

F(x) = 1-exp (-B), the reliabil i ty R = exp (-B).  

reliability of the s t ruc ture  can be reduced to  two steps.  

pa rame te r s  x x and m for the material to  be used and, then, evaluating 

the definite integral  B which is obviously dependent on the type of loading 

and the geometry of the member.  A considerable amount of work has  been 

done i n  both of these a r e a s  with mixed success  and this work is thoroughly 

reviewed in Ref. 18. 

Thus determining the 

F i r s t ,  finding the 

0) u’ 
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With regard  to the definite integral ,  B , the sole distinction con- 

cerning its application hinges on the existence of a solution i n  closed f o r m  

for the loading and geometry t o  be investigated. As shown previously, the 

solution for the case  of uniform tension is the t r iva l  
m 

B = V [F] (86 )  

Fo r  other load conditions, such as tors ion or  flexure,  a r e s o r t  generally 

must  be made to  numerical  procedures ,  thus requiring a computation for 

each set  of values of x 

the special case  x = 0 a g rea t  number of closed fo rm solutions do  exis t  

for  such regular  c ross -sec t ions  as the rectangular and c i rcu lar .  

culty encountered h e r e  is, of course,  not a theoret ical  one but simply a n  

inconvenience i n  pract ice .  

quent illustrations of probabilist ic design will  be r e s t r i c t ed  t o  a pure couple 

M ac t ing  on a rectangular cross-sect ion.  Here  it is possible to  expres s  the 

r i s k  of rupture as 

d 

x and m. It has  been shown howeverl2'that for 
0' u 

U 
The diffi- 

In the in te res t  of brevity and c la r i ty  the subse-  

I 

where V is the volume of a beam of length L, width b , and depth d ; the 

is  6M maximum fiber s t r e s s  x = - 
bd2 

taken as - 2y 

measured from the neutral  axis.  

ing the s t r e s s  gradient, which is constant i n  the direct ion of length and width 

and var ies  f rom ze ro  at the neutral  axis t o  x 

half of the beam in  tension. 

beam of given dimensions and mater ia l ,  Eq. (87)  yields a value of xb and, 

hence, the moment which can  be supported. To demonstrate ,  we ci te  the 

following example. 

is taken as the intensity level x ; 

in  Eq. (84); and y is the coordinate through the beam depth 

It is easy  t o  check this  formula by integrat-  
d 

a t  the outer fiber, over the b 
It is c l e a r  that  if a reliabil i ty is ' specif ied fo r  a 

Find the pure couple M which can  be supported with reliabil i ty of 
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95 pe r  cent by a rectangular beam with L = loo", b = 211, d = 4". 

ma te r i a l  used is a ce ramic  with m = 5, x = . 5 ksi ,  and x = 2 ksi.  
The 

U 0 

Since R = exp (-B) = . 9 5  (B = . 05), we may substitute into 

formula (87) and find I. 

(100 x 4 x 2) 

2 (6) 

(xb- .  5)" 

x p )  
5' ( .  05) = 

Solving fo r  x we find x = 1. 04 ksi. by b 

- (1 .04 )  (2 )  (16) 
xbbd 

Thus,  M = = 5. 54 in-k.  --6 - 

D. The P r e s t r e s s i n g  of Bri t t le  Mater ia ls  

I t  is well known that the load carrying capacity of beams constructed 

with ma te r i a l  which is much s t ronger  in compression than in tension can be 

increased  by introducing a compressive p re s t r e s s .  

the tensi le  fa i lure  s t r e s s e s  a r e  considered to have a probability distribution. 

Considering amaxial p r e s t r e s s  x 

This is no less t rue  when 

i t  is c lear  that 
P 

and that for  the l inear  s t r e s s  gradient we have 
U 1" 

J m t  1 0 

(xb-xp-xu) 
considered previously B = V . Thus in bending i t  is m x x  b o  

possible to treat a n  axial p r e s t r e s s  as an  increa2e in the pa ramte r  x 

Comparing the moment-carrying capacit ies of two beams of the s a m e  

ma te r i a l ,  one axially p re s t r e s sed  and the other not (and denoted by p r imes )  

we find that 

U 

m t l  
X' 

Xb 
B -  b 
7- - V 

W e  may  note that this is by no means the most efficient method of p r e s t r e s s -  

ing but it wil l  s e r v e  for purposes of illustration. 
easi ly  seen  that the most  rewarding technique would be to use  an  eccentricity 

such that the outer  f iber  would have a tensile s t r e s s  of x 

load. 

As a ma t t e r  of fact, it is 

under the pres t ress ing  
U 

It is possible by means of Eq. (88) to make a comparison showing 



quantitatively the advantage of pres t ress ing .  

span lengths, and total weight constant and compute the increased moment 

carrying capacity as a function of the p r e s t r e s s .  

weight implies that  

the pres t ress ing  tendon. 

length, pbAL = pbAb t p tAt. 

One can hold the rel iabi l i t ies ,  

The  condition of equal 

pbV6 = p b b  V t p tVt where  the subscr ipt .  t indicate$ 

Since we a r e  comparing beams of equal span 

The axial  p res t ress ing  force  must  be  

equilibrated by the uniform p r e s t r e s s ,  
x P . 

Using a tendon s t r e s s  x t’ 

vb - 1 Ab - - 
t AL T + PtXp - 

A x  
P = x A = x A  T h u s A t =  b p  , a n d , - -  p b  t t ‘  X 

bxt 

F r o m  Eq. ( 8 8 ) ,  the condition of equal re l iabi l i t ies  leads to  

r 1 m t  1 

Although an algebraic  solution for  x is not generally feasible, for any 

given comparison all other t e r m s  a r e  known and x 
cally. But 

b 
can be found numer i -  b 

The ra t io  A /A1( b b  
F o r  our purposes we will make the most  conservative choice in  reducing the 

c r o s s  section of the p r e s t r e s s e d  beam - keeping the width constant. Then since 

is specified by equilibrium; but d/d’ is as yet indeterminate.  

Xb [ ‘px l2 = [ + PtXp 3. And finally M/M’ =T 
1 

b = b’, A;, Ab --& - 
Xb 1 t x  (91 )  

bxt bxt 
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where c depends on the way in which the c ross  section is reduced. The 

most  efficient method, at least  on its face, is to keep the depth constant 

and reduce the width. In  o rde r  to  beg the question of l a t e ra l  stability which 

may limit width reductions, we will use a constant width scheme in the 

following example : 
3, 

Find the improved moment carrying capacity attainable in the 

beam of the previous example by applying a uniform p r e s t r e s s ,  x-. Let  pL i 
P U 

240#/ft3, p t  = 480#/ft , x = 200 ksi .  Assume that the width of the beam 3 
t 

will be held constant and that the limiting condition will be compressive 

failure at x t xb = x = 200 ksi, which is a reasonable value for the c rush-  

ing s t rength of a ce ramic  mater ia l .  
P ult 

F r o m  the previous example we see that X I  = 1.04 ksi .  Substi- b 
tution into Eq. (88) yields 

6 
(Xb'. 5 - xp) 6 , O r  X = 4 1 . 6 [  lX ] ( x b - . 5 - x  ) 6 

b P 
(1.04-. 50) 1 t p  100 

where  x and x a r e  in ksi .  This equation can  be solved for xb given 

any par t icular  value of x Then, corresponding to  that value of x we 

can complete M/M1 and xp t xb. The most expedient procedure is to  plot 

both of these as functions of x . Then it is possible to  determine,  by 

inspection, the maximum moment increase permissible  by the compressive 

s t rength of the mater ia l .  Such a plot has  been made for this  example and is 

shown i n  Fig. 43. 

a p r e s t r e s s  the allowable moment can be increased by a factor of a lmost  25. 

P b 

P' PY 

P 

On examination of this graph we see  that by introducing 

Now, f r o m  the design standpoint, we will add res s  the problem of 

choosing a cross-sec t ion  and p r e s t r e s s  so  as  to  minimize the total  weight 

requi red  to  support  a given moment. 

gular  section, with depth, d, and width, by subjected to, a pure moment, M , 
and with a pres t ress ing  force,  P. 

be denoted by A b ,  its density by p 

The design s t r e s s  in the tendon will be designated a s  

minimize the total  weight W , o r  since the beam is of constant section 

throughout its span, L , the function, 

W e  shall consider a beam of rectan-  

Le t  the c r o s s  sectional a r e a  of the beam 

b t' and those of the tendon by At and p 

xt. We wish t o  



I 
I 

7 J 

0 

0 0 
(D 0 

N - 
0 0 0 0 
(\I Q) t - 
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w = W / L = p A  t p A  
t t  b b' 

But since P = x A = x A t t  p b y  

w = bd 
t -f$ xi. 

vb (xb-xu-x m t  1 
If we rewr i teEq.  (871, we see that B = mj 
so, fo r  a given reliabil i ty x can  be expressed a s  a function of x But 

X b = 2  

ation with respec t  t o  d by a pr ime,  a turning point can  be found by solving 

w'(d) = 0. 

and, m x x  b o  

P b' 
6M Hence w is a function only of the depth d. Denoting differenti-  

1 
Solving Eq. (93) for x we find 

D 

Substituting and recognizing that b cannot be zero,  we see  that the c r i t i ca l  

value of d is given by the solution of the equation 
I 

If this  is t o  be a minimum, w"(d) must  be positive. 

w"(d) = - and substituting again, we find 
t X 

d- "1 m t l  
bpt [ 12M 12MB ( m - l ) x  3(m-2) 

t bd3 ( m t l )  2 ( L b 2  
w"(d) = - 

Thus when m is g rea t e r  than o r  equal to two, the value of d assuredly  

cor responds  to a minimum. F o r  m less than two a substitution is the 
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simplest  manner of checking the minimization. 

By way of i l lustration we will now find the minimum weight 

design to  support the moment which could be c a r r i e d  by the unpres t ressed  

beam of the previous example and compare  the weights, 

Find the minimum weight design to  support, with a reliabil i ty of 

95 per cent, a moment of 5. 54 in-k on a rectangular beam with L = loo", 
b = 2" .  

x = 2 ksi .  

The mater ia l  t o  be used is a ce ramic  with m = 5, xu = . 5 ksi ,  
3 3 Let  p b  = 240#/ft , pt  = 480#/ft and xt = 200 ksi .  

0 

Substituting in  Eq. (95), we find, using r = l/d, 

16.65 r t .548 r u2 = 99.5. 2 

Hence, r = 2 . 4 3 7 3 d  = .411 in. 

So, Ab = bd = . 8 2 2  in  +V, = 8 2 . 2  in. 2 3 

Substituting in Eq. (94) we find x = 96.6 ksi .  
P 

W e  note as a design check that, since ce ramics  have compress ive  

strengths i n  excess  of 200 ksi ,  we a r e  in  no danger of compressive fai lure .  

The maximum compressive stress is xb t x = 98.3 + 96.6 = 194.9 ksi .  
P 

2 X 96* 
( .  8 2 2 )  = .398 in. At = 2 Ab - - - 

X t 200 

Thus, 

48 9 24 0 
172 W =m (39.8) + 8 ( 8 2 . 2 )  = 22.4# 

We may compare this with the weight of the 2 x 4 x 100 section of the 

previous example which could withstand the same  load and which is 

(-) 24 0 800 = 111. l# .  
17 28 
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